题目内容
16.(1)如图1,将△ABC纸片沿DE折叠,使点A落在四边形BCDE内点A′的位置,若∠A=40°,求∠1+∠2的度数;(2)通过(1)的计算你发现∠1+∠2与∠A有什么数量关系?请写出这个数量关系,并说明这个数量关系的正确性;
(3)将图1中△ABC纸片的三个内角都进行同样的折叠.
①如果折叠后三个顶点A、B、C重合于一点O时,如图2,则图中∠α+∠β+∠γ=180°;∠1+∠2+∠3+∠4+∠5+∠6=360°;
②如果折叠后三个顶点A、B、C不重合,如图3,则①中的关于“∠1+∠2+∠3+∠4+∠5+∠6”的结论是否仍然成立?请说明你的理由.
分析 (1)根据将△ABC纸片沿DE折叠,使点A落在四边形BCDE内点A′的位置,若∠A=40°,可以求得∠AED+∠ADE=∠A′ED+∠A′DE,进而可以求得∠1+∠2的度数;
(2)先写出数量关系,然后说明理由,将△ABC纸片沿DE折叠,使点A落在四边形BCDE内点A′的位置,可以得到折叠后的各个角的关系,从而可以解答本题;
(3)根据第二问的推导,可以进行这一问结论的推导,从而可以解答本题.
解答 解:(1)∵∠A=40°,
∴∠AED+∠ADE=∠A′ED+∠A′DE=140°,
∴∠1+∠2=360°-(∠AED+∠ADE)-(∠A′ED+∠A′DE)=80°,
即∠1+∠2的度数是80°;
(2)∠1+∠2=2∠A,
理由:∵将△ABC纸片沿DE折叠,使点A落在四边形BCDE内点A′的位置,
∴∠AED+∠ADE=∠A′ED+∠A′DE,∠A=∠A′,
∴∠1+∠2
=360°-(∠AED+∠ADE)-(∠A′ED+∠A′DE)
=360°-(180°-∠A)-(180°-∠A′)
=360°-180°+∠A-180°+∠A′
=2∠A,
即∠1+∠2=2∠A;
(3)①由题意可得,∠α+∠β+∠γ=360°-180°=180°,
∠1+∠2+∠3+∠4+∠5+∠6=2∠A+2∠B+2∠C=2(∠A+∠B+∠C)=2×180°=360°,
故答案为:180°,360°;
②如果折叠后三个顶点A、B、C不重合,如图3,则①中的关于“∠1+∠2+∠3+∠4+∠5+∠6”的结论仍然成立;
理由:∵∠1+∠2=2∠A,∠3+∠4=2∠B,∠5+∠6=2∠C,
∴∠1+∠2+∠3+∠4+∠5+∠6
=2∠A+2∠B+2∠C
=2(∠A+∠B+∠C)
=360°,
即如果折叠后三个顶点A、B、C不重合,如图3,则①中的关于“∠1+∠2+∠3+∠4+∠5+∠6”的结论仍然成立.
点评 本题考查翻折问题、角的计算,解题的关键是明确题意,找出所求问题需要的条件.
| 质量(单位:克) | +6 | +5 | +4 | +3 | +2 | +1 | 0 | -1 | -2 | -3 | -4 | -5 | -6 |
| 袋装(单位:袋) | 1 | 1 | 2 | 2 | 3 | 4 | 5 | 3 | 2 | 1 | 0 | 1 | 0 |
(2)这25奶粉的总质量为多少克?
(3)百家姓超市在“中秋节”的促销活动中,一次性购进了此种袋装奶粉50袋,先将每袋奶粉按获利15%的价格标价为92元,然后在促销活动中,再打9折销售.
问:百家姓超市这50袋奶粉全部卖出后,是盈利了,还是亏损了?请求出盈利或亏损的钱数(请运用方程来解答).
| A. | $\frac{c}{a+b}$ | B. | $\frac{b}{a+b+c}$ | C. | $\frac{a+c}{a+b+c}$ | D. | $\frac{a+c}{b}$ |