题目内容
下列图形中,既是中心对称图形又是轴对称图形的是( )
A. . B. C. D.
铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.
下列性质中,矩形、菱形、正方形都具有的是( )
A. 对角线相等 B. 对角线互相垂直 C. 对角线平分一组对角 D. 对角线互相平分
若圆锥的底面半径为3cm,高为4cm,则它的侧面展开图的面积为____cm2.
在平面直角坐标系中,点A(a ,2)是直线y=x上一点,以A为圆心,2为半径作⊙A,若P(x,y)是第一象限内⊙A上任意一点,则的最小值为( )
A. 1 B. C. —1 D.
如图1,△ABC为等腰直角三角形,∠ACB=90?,F是AC边上的一个动点(点F与A. C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.
(1)猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
(2)将图1中的正方形CDEF,绕着点C按顺时针方向旋转任意角度α,得到如图2的情形。图2中BF交AC于点H,交AD于点O,请你判断(1)中得到的结论是否仍然成立,并证明你的判断。
(3)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90?,正方形CDEF改为矩形CDEF,如图3,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值。
如图,直线y=x+与x轴、y轴分别相交于A,B两点,圆心P的坐标为(1,0),⊙P与y轴相切于点O.若将⊙P沿x轴向左平移,当⊙P与该直线相切时,点P坐标为___.
如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.
如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为( )
A. 1:1 B. 1:2 C. 1:3 D. 1:4