题目内容
如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为___.
若两个等边三角形的边长分别为与3 ,则它们的面积之比为_________.
已知:如图,在△ABC中,AB=AC=13,BC=24,点P、D分别在边BC、AC上,AP2=AD•AB,
(1) ∽;
(2)求∠APD的正弦值.
掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数是奇数的概率为( )。
A. B. C. D.
农民张大伯为了致富奔小康,大力发展家庭养殖业,他准备用40米长的木栏围一个矩形的养圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长25米的墙,设计了如图一个矩形的养圈.
(1)请你求出张大伯设计的矩形羊圈的面积;
(2)请你判断他的设计方案是否使矩形羊圈的面积最大?如果不是最大,应怎样设计?请说明理由.
如图,已知A、B是反比例函数y= (k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C.过点 P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P 运动的时间为t,则S关于t的函数图象大致为( )
将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=x2,则原二次函数图象的函数表达式是( )
A. y=(x﹣1)2+2 B. y=(x+1)2+2 C. y=(x﹣1)2﹣2 D. y=(x+1)2﹣2
一位运动员投掷铅球,如果铅球运行时离地面高度为y(米)关于水平距离x(米)的函数解析式为,那么铅球运动过程中最高点离地面的距离为______m.
已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在边BC上,求证:AB=AC;
(2)如图2,若点O在△ABC的内部,求证:AB=AC;
(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.