题目内容
(1)求证:PC平分∠APD;
(2)求证:PD•PA=PC2+AC•DC;
(3)若PE=3,PA=6,求PC的长.
分析:(1)过P作两圆的公切线PT,即可得出答案;
(2)由AC•DC=PC•CF,PC2+AC•DC=PC2+PC•CF=PC(PC+CF)=PC•PF.即要证PC•PF=PD•PA,由△PDC∽△PFA可得;
(3)由△PCA∽△PEC,得
=
,即PC2=PA•PE,得PC=3
.
(2)由AC•DC=PC•CF,PC2+AC•DC=PC2+PC•CF=PC(PC+CF)=PC•PF.即要证PC•PF=PD•PA,由△PDC∽△PFA可得;
(3)由△PCA∽△PEC,得
| PC |
| PE |
| PA |
| PC |
| 2 |
解答:
解:(1)过P作两圆的公切线PT,
根据弦切角定理得:∠PCD=∠PBC
∠PCB=∠PDC
∴∠DPC=∠APC,
∴PC平分∠APD;
(2)∵AC•DC=PC•CF,
∴PC2+AC•DC=PC2+PC•CF=PC(PC+CF)=PC•PF.
∵△PDC∽△PFA,
∴PC•PF=PD•PA,
∴PD•PA=PC2+AC•DC;
(3)∵△PCA∽△PEC,
∴
=
,
即PC2=PA•PE,
∵PE=3,PA=6,
∴PC=3
.
根据弦切角定理得:∠PCD=∠PBC
∠PCB=∠PDC
∴∠DPC=∠APC,
∴PC平分∠APD;
(2)∵AC•DC=PC•CF,
∴PC2+AC•DC=PC2+PC•CF=PC(PC+CF)=PC•PF.
∵△PDC∽△PFA,
∴PC•PF=PD•PA,
∴PD•PA=PC2+AC•DC;
(3)∵△PCA∽△PEC,
∴
| PC |
| PE |
| PA |
| PC |
即PC2=PA•PE,
∵PE=3,PA=6,
∴PC=3
| 2 |
点评:本题考查了相似三角形的判定和性质、弦切角定理等知识,综合性强,难度较大.
练习册系列答案
相关题目