题目内容
化简求值:(| x+2 |
| x2-2x |
| x-1 |
| x2-4x+4 |
| x-4 |
| x |
| 1 | ||
2-
|
分析:首先利用分式的混合原算法则将原分式化简,再化简x,然后将x的化简得结果代入化简后的分式,即可求得答案.
解答:解:(
-
)÷
=[
-
]•
=[
-
]•
=
•
=
•
=
,
∵x=
=2+
,
∴原式=
=
.
| x+2 |
| x2-2x |
| x-1 |
| x2-4x+4 |
| x-4 |
| x |
=[
| x+2 |
| x(x -2) |
| x-1 |
| (x-2)2 |
| x |
| x-4 |
=[
| (x+2)(x-2) |
| x(x-2)2 |
| x(x-1) |
| x(x-2)2 |
| x |
| x-4 |
=
| x2-4-x2+x |
| x(x-2)2 |
| x |
| x-4 |
=
| x-4 |
| x(x-2)2 |
| x |
| x-4 |
=
| 1 |
| (x-2)2 |
∵x=
| 1 | ||
2-
|
| 3 |
∴原式=
| 1 | ||
(2+
|
| 1 |
| 3 |
点评:此题考查了分式的化简求值问题.此题难度不大,解题的关键是准确利用分式混合运算法则求解,注意解题需细心.
练习册系列答案
相关题目