题目内容
如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,若扇形OEF的面积为3π,则菱形OABC的边长为( )A.
B.2
C.3
D.4
【答案】分析:连接OB.根据菱形的各边相等和同圆的半径相等发现等边三角形OBC,再根据菱形的性质得到∠AOC=2∠BOC=120°,从而根据扇形的面积公式求得扇形所在圆的半径,即为菱形的边长.
解答:
解:连接OB.
∵四边形OABC是菱形,
∴OC=BC.
又OC=OB,
∴△OBC是等边三角形.
∴∠COB=60°.
∴∠AOC=2∠COB=120°.
设扇形的半径是R.
∴
=3π,
R=3.
故选C.
点评:此题综合考查了菱形的性质和扇形的面积公式.
解答:
∵四边形OABC是菱形,
∴OC=BC.
又OC=OB,
∴△OBC是等边三角形.
∴∠COB=60°.
∴∠AOC=2∠COB=120°.
设扇形的半径是R.
∴
R=3.
故选C.
点评:此题综合考查了菱形的性质和扇形的面积公式.
练习册系列答案
相关题目