题目内容

如图,一次函数y1=ax+1的图象与y轴交于点A,与反比例函数数学公式的图象相交于M(m,3)、N(3,n)两点,△OMN的面积为数学公式
(1)求一次函数和反比例函数的解析式;
(2)直接写出y1>y2时x的取值范围.

解:(1)∵M(m,3)在反比例y2=的图象上,
∴3=,即m=
∵A(0,1),N(3,n),S△OMN=
×1×(-)+×1×3=
解得:k=-6,
∴反比例解析式为y2=-
∴m=-2,即M(-2,3),
代入y1=ax+1中得:a=1,
∴一次函数解析式为y1=x+1;

(2)将N(3,n)代入反比例函数解析式得:n=-2,即N(3,-2),
再由M(-2,3),结合图形得:y1>y2时x的取值范围为x<-2或0<x<3.
分析:(1)将M坐标代入反比例解析式表示出m,再由A与N坐标,以及已知三角形MON的面积,列出关于k的方程,求出方程的解得到k的值,确定出反比例解析式;将M坐标代入反比例解析式求出m的值,确定出M坐标,代入一次函数解析式求出a的值,即可确定出一次函数解析式;
(2)由M与N坐标,以及0,将x轴分为4个范围,找出一次函数图象位于反比例图象上方时的范围即可.
点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定函数解析式,以及一元二次方程的解法,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网