题目内容
【题目】如图,正方形ABCD中,对角线AC、BD交于点O,∠BAC的平分线交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,连接GE、GF,以下结论:①△OAE≌△OBG;②四边形BEGF是菱形;③BE=CG;④
﹣1;⑤S△PBC:S△AFC=1:2,其中正确的有( )个.
![]()
A.2B.3C.4D.5
【答案】C
【解析】
根据AF是∠BAC的平分线,BH⊥AF,可证AF为BG的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EG=EB,FG=FB,即可判定②选项;设OA=OB=OC=a,菱形BEGF的边长为b,由四边形BEGF是菱形转换得到CF=
GF=
BF,由四边形ABCD是正方形和角度转换证明△OAE≌△OBG,即可判定①;则△GOE是等腰直角三角形,得到GE=
OG,整理得出a,b的关系式,再由△PGC∽△BGA,得到
=1+
,从而判断得出④;得出∠EAB=∠GBC从而证明△EAB≌△GBC,即可判定③;证明△FAB≌△PBC得到BF=CP,即可求出
,从而判断⑤.
解:∵AF是∠BAC的平分线,
∴∠GAH=∠BAH,
∵BH⊥AF,
∴∠AHG=∠AHB=90°,
在△AHG和△AHB中
,
∴△AHG≌△AHB(ASA),
∴GH=BH,
∴AF是线段BG的垂直平分线,
∴EG=EB,FG=FB,
∵四边形ABCD是正方形,
∴∠BAF=∠CAF=
×45°=22.5°,∠ABE=45°,∠ABF=90°,
∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,
∴∠BEF=∠BFE,
∴EB=FB,
∴EG=EB=FB=FG,
∴四边形BEGF是菱形;②正确;
设OA=OB=OC=a,菱形BEGF的边长为b,
∵四边形BEGF是菱形,
∴GF∥OB,
∴∠CGF=∠COB=90°,
∴∠GFC=∠GCF=45°,
∴CG=GF=b,∠CGF=90°,
∴CF=
GF=
BF,
∵四边形ABCD是正方形,
∴OA=OB,∠AOE=∠BOG=90°,
∵BH⊥AF,
∴∠GAH+∠AGH=90°=∠OBG+∠AGH,
∴∠OAE=∠OBG,
在△OAE和△OBG中
,
∴△OAE≌△OBG(ASA),①正确;
∴OG=OE=a﹣b,
∴△GOE是等腰直角三角形,
∴GE=
OG,
∴b=
(a﹣b),
整理得a=
b,
∴AC=2a=(2+
)b,AG=AC﹣CG=(1+
)b,
∵四边形ABCD是正方形,
∴PC∥AB,
∴
=
=
=1+
,
∵△OAE≌△OBG,
∴AE=BG,
∴
=1+
,
∴
=
=1﹣
,④正确;
∵∠OAE=∠OBG,∠CAB=∠DBC=45°,
∴∠EAB=∠GBC,
在△EAB和△GBC中
,
∴△EAB≌△GBC(ASA),
∴BE=CG,③正确;
在△FAB和△PBC中
,
∴△FAB≌△PBC(ASA),
∴BF=CP,
∴
=
=
=
=
,⑤错误;
综上所述,正确的有4个,
故选:C.