题目内容

如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:

①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.

其中正确的结论有(  )

 

A.

5个

B.

4个

C.

3个

D.

2个

考点:

相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质

分析:

依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.

解答:

解:∵四边形ABCD是正方形,

∴∠BAC=∠DAC=45°.

∵在△APE和△AME中,

∴△APE≌△AME,故①正确;

∴PE=EM=PM,

同理,FP=FN=NP.

∵正方形ABCD中AC⊥BD,

又∵PE⊥AC,PF⊥BD,

∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE

∴四边形PEOF是矩形.

∴PF=OE,

∴PE+PF=OA,

又∵PE=EM=PM,FP=FN=NP,OA=AC,

∴PM+PN=AC,故②正确;

∵四边形PEOF是矩形,

∴PE=OF,

在直角△OPF中,OF2+PF2=PO2

∴PE2+PF2=PO2,故③正确.

∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;

∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.

∴PM=PN,

又∵△AMP和△BPN都是等腰直角三角形,

∴AP=BP,即P时AB的中点.故⑤正确.

故选B.

点评:

本题是正方形的性质、矩形的判定、勾股定理得综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网