题目内容
如图,△ABC中,∠ACB=90°,CD⊥AB于点D,E是AC的中点,DE的延长线交BC的延长线于点F,EF=5,∠B的正切值为
(1)求证:△BDF∽△DCF;
(2)求BC的长.
∴∠ADC=90°,
∵E是AC的中点,
∴DE=EC,
∴∠EDC=∠ECD,
∵∠ACB=90°,∠BDC=90°
∴∠ECD+∠DCB=90°,∠DCB+∠B=90°,
∴∠ECD=∠B,
∴∠B=∠FDC,
又∵∠F=∠F,
∴△BDF∽△DCF;
(2)解:设DE=x,则AC=2DE=2x,DF=DE+EF=x+5.
∵△BDF∽△DCF,
∴
∴BF=2DF=2(x+5),CF=
∴BC=BF-CF=
在直角△ABC中,∵tan∠B=
∴BC=2AC,即
解得x=3
∴BC=
分析:(1)根据直角三角形斜边上的中线等于斜边的一半得出DE=EC,推出∠EDC=∠ECD,求出∠FDC=∠B,根据∠F=∠F证△FBD∽△FDC,即可;
(2)设DE=x,则AC=2x,DF=x+5.由(1)可知△BDF∽△DCF,根据相似三角形对应边的比相等及正切函数的定义得到
点评:本题考查了相似三角形的判定和性质,锐角三角函数的定义,直角三角形的性质,难度适中,解题的关键是由相似三角形的性质得到比例式.
练习册系列答案
相关题目