题目内容
计算.(1)(2a﹣b)2﹣b(b﹣2a)﹣a2 (2)
某校有A、B两个阅览室,甲、乙、丙三名学生各自随机选择其中的一个阅览室阅读.
(1)下列事件中,是必然事件的为( )
A.甲、乙同学都在A阅览室 B.甲、乙、丙同学中至少两人在A阅览室
C.甲、乙同学在同一阅览室 D.甲、乙、丙同学中至少两人在同一阅览室
(2)用画树状图的方法求甲、乙、丙三名学生在同一阅览室阅读的概率.
如图,已知抛物线与x轴交于A(-1,0),B(4,0),与y轴交于C(0,-2).(1)求抛物线的解析式;
(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);
(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.
根据电视台天气预报:某市明天降雨的概率为80%,对此信息,下列几种说法中正确的是( )
A. 该市明天一定会下雨
B. 该市明天有80%地区会降雨
C. 该市明天有80%的时间会降雨
D. 该市明天下雨的可能性很大
对于一个三位正整数t,将各数位上的数字重新排序后(包括本身),得到一个新的三位数 (a≤c),在所有重新排列的三位数中,当|a+c﹣2b|最小时,称此时的 为t的“最优组合”,并规定F(t)=|a﹣b|﹣|b﹣c|,例如:124重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124为124的“最优组合”,此时F(124)=﹣1.
(1)三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F(t)=0;
(2)一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数”.例如:123的第一位数1能披1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y为整数),m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.
一组数据1,2,a,4,5的平均数是3,则这组数据的方差为_____.
函数y=中自变量x的取值范围是( )
A. x≥1 B. x>2 C. x≥1且x≠2 D. x≠2
如图,已知点C为反比例函数图象上的一点,过点C向坐标轴引垂线,垂足为A、B,四边形AOBC的面积为6,则反比例函数的解析式为_____.
下列命题中不正确的是( )
A. 全等三角形的对应边相等 B. 全等三角形的面积相等
C. 全等三角形的周长相等 D. 周长相等的两个三角形全等