题目内容
【题目】感知:如图①,△ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的顶点D、F分别在边AC、BC上,易证:AD=BF(不需要证明);
探究:将图①的正方形CDEF绕点C顺时针旋转α(0°<α<90°),连接AD、BF,其他条件不变,如图②,求证:AD=BF;
应用:若α=45°,CD=
,BE=1,如图③,则BF= .
![]()
【答案】(1)证明见解析;(2)
【解析】试题分析: 探究:证明△ADC≌△BFC,可得结论;
应用:过D作DG⊥AC于G,先根据勾股定理得:EC=2,得正方形边长为3,则AC=3,根据α=45°,得△DCG是等腰直角三角形,求出CG的长,则得AG的长,再次利用勾股定理求AD的长,即BF的长.
试题解析:
证明:探究:如图②,
四边形CDEF为正方形,
∴CD=CF,
由旋转得:∠ACD=∠BCF,
△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,
△ADC≌△BFC,
∴AD=BF;
应用:如图③,
![]()
∵四边形CDEF为正方形,
∠EDC=90° ED=DC,
![]()
,
∴BC=BE+EC=1+2=3,
∴AC=BC=3,
过D作DG⊥AC于G,
∵a=45°,
即∠ACD=45,
∴△DCG是等腰直角三角形,
∴DG=CG=1,
∴AG=BC-CG=3-1=2,
由勾股定理得:
,
同理得:△ADC≌△BFC,
![]()
点睛: 本题是四边形和图形旋转的综合题,考查了正方形、等腰直角三角形、全等三角形的性质,熟知正方形的各边相等,各角都是90°,等腰直角三角形的两直角边相等,且锐角为45°;明确旋转角相等,同时利用三角形全等和勾股定理求边和角的度数,使问题得以解决.
【题目】商场销售某种冰箱,该种冰箱每台进价为2500元.已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了x元.
(1)填表(不需化简):
每天的销售量/台 | 每台销售利润/元 | |
降价前 | 8 | 400 |
降价后 |
(2)商场为使这种冰箱平均每天的销售利润达到5000元,则每台冰箱的实际售价应定为多少元?