题目内容

已知ABCDE是反比例函数)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是      (用含π的代数式表示).

 13π-26【解析】本题考查的是反比例函数和圆的有关计算.首先根据能够整除16的正整数,求出图像上的5个整数点分别为(1,16),(2,8),(4,4),(8,2),(16,1),其次利用扇形面积公式求弓形面积,即每个橄榄形面积的一半.当点P位于点(4,4)时,S橄榄型=2×(S等腰直角三角形)=8π-16,其余四个计算方法同上.它们的面积从左到右分别为π-1,2π-4, 2π-4, π-1.所以橄榄形面积总和为13π-26. 本题容易错误的地方是在不理解什么是整数点的情况下无法求出ABCDE五点的整数点坐标,这也就是本题的难点所在.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网