题目内容
【题目】如图,在△ABC中,AB=AC,AH⊥BC,垂足为H,D为直线BC上一动点(不与点B、C重合),在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE.
(1)求证:∠ABC=∠ACB;
(2)当D在线段BC上时,
①求证:△BAD≌△CAE;②当点D运动到何处时,AC⊥DE,并说明理由;
(3)当CE∥AB时,若△ABD中最小角为20°,试探究∠ADB的度数.(直接写出结果,无需写出求解过程)
![]()
![]()
![]()
【答案】(1)见解析;(2)①见解析;②D运动到BC中点(H点)时,AC⊥DE,理由见解析;(3)20°或40°或100°
【解析】
(1)证明Rt△AHB≌Rt△AHC(HL),即可解决问题.
(2)①根据SAS即可证明;②D运动到BC中点(H点)时,AC⊥DE;利用等腰三角形的三线合一即可证明;
(3)分三种情形分别求解即可解决问题;
解:(1)∵AB=AC,AH⊥BC,
∴∠AHB=∠AHC=90°,
在Rt△AHB和Rt△ACH中,
∴Rt△AHB≌Rt△AHC(HL),
∴∠ABC=∠ACB.
(2)①如图1中,
![]()
∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
在△BAD和△CAE中,
∴△BAD≌△CAE.
②D运动到BC中点(H点)时,AC⊥DE;
理由:如图2中,∵AB=AC,AH⊥BC,
![]()
∴∠BAH=∠CAH,
∵∠BAH=∠CAE,
∴∠CAH=∠CAE,
∵AH=AE,
∴AC⊥DE.
(3)∠ADB的度数为20°或40°或100°.
理由:①如图3中,当点D在CB的延长线上时,
![]()
∵CE∥AB,
∴∠BAE=∠AEC,∠BCE=∠ABC,
∵△DAB≌△EAC,
∴∠ADB=∠AEC,∠ABD=∠ACE,
∴∠BAC=∠BAE+EAC=∠AEC+∠EAC=180°-∠ACE=180°-∠ABD=∠ABC=∠ACB,
∴△ABC是等边三角形,
∴∠ABC=60°
∵△ABD中的最小角是∠BAD=20°,则∠ADB=∠ABC-∠BAD=40°.
②当点D在线段BC上时,最小角只能是∠DAB=20°,此时∠ADB=180°-20°-60°=100°.
③当点D在BC 延长线上时,最小角只能是∠ADB=20°,
综上所述,满足条件的∠ABD的值为20°或40°或100°.