题目内容
【题目】如图①,直线
与
轴负半轴、
轴正半轴分别交于
两点,
的长度分别为
和
,且满足
.
![]()
(1)
是________三角形.
(2)如图②,正比例函数
的图象与直线
交于点
,过
两点分别作
于
,
于
,若
,
,求
的长.
![]()
(3)如图③,
为
上一动点,以
为斜边作等腰直角
,
为
的中点,连
,试问:线段
是否存在某种确定的数量关系和位置关系?写出你的结论并说明理由.
![]()
【答案】(1)等腰直角;(2)6;(3)PO=PD且PO⊥PD.理由见解析.
【解析】
(1)已知a2-2ab+b2=0,化简可得a=b,然后可得△AOB为等腰直角三角形;
(2)证明△MAO≌△NOB,得出AM=ON,然后求出MN的值;
(3)根据已知E为中点,联想到延长DP到点C,使DP=PC,再连接OD、OC、BC,先证明△DEP≌△CBP得到边角的等量关系,再证明△OAD≌△OBC,最后可得出△DOC为等腰直角三角形,从而得出结论.
解:(1)∵a2-2ab+b2=0,∴(a-b)2=0,
∴a=b,
∵∠AOB=90°,
∴△AOB为等腰直角三角形.
故答案为:等腰直角;
(2)∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90°,
∴∠MAO=∠MOB,
∵AM⊥OQ,BN⊥OQ,
∴∠AMO=∠BNO=90°,
在△MAO和△BON中,
,
∴△MAO≌△NOB(AAS),
∴AM=ON,
∴MN=ON-OM=AM-OM=6;
(3)PO=PD且PO⊥PD.理由如下:
如图,延长DP到点C,使DP=PC,连接OD、OC、BC,![]()
在△DEP和△CBP,
,
∴△DEP≌△CBP(SAS),
∴CB=DE=DA,∠DEP=∠CBP=135°,
则∠CBO=∠CBP-∠ABO=135°-45°=90°,
又∵∠BAO=45°,∠DAE=45°,
∴∠DAO=90°,
在△OAD和△OBC,
,
∴△OAD≌△OBC(SAS),
∴OD=OC,∠AOD=∠COB,
∴∠COD=∠AOB=90°,
∴△DOC为等腰直角三角形,
∴PO=PD,且PO⊥PD.