题目内容
如图,在△ABC中,点D、E分别在边AB、AC上,若==,则S△ADE:S△ABC=( )
A.1:4 B.1:2 C.1:3 D.1:
如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A-C-B-A运动,设运动时间为t秒(t>0).
(1)若点P在AC上,且满足PA=PB时,求出此时t的值;
(2)若点P恰好在∠BAC的角平分线上,求t的值;
(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.
如图,AB⊥BC,AD⊥CD,垂足分别为B、D,若CB=CD,则△ABC≌△ACD,理由是( )
A.SAS B.AAS C.HL D.ASA
如图,AB、DE是直立在地面上的两根立柱,某一时刻立柱AB在阳光下的投影为BC,请你在图中画出此时立柱DE在阳光下的投影.
如图是二次函数y=ax2+bx+c=(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有( )
A.①③④ B.②④⑤ C.①②⑤ D.②③⑤
如图,已知抛物线y=ax2+bx+4与x轴交于A(﹣2,0)、B两点,与y轴交于C点,其对称轴为直线x=1.
(1)直接写出抛物线的解析式: ;
(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;
(3)除(2)中的点A′、C′外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形?若存在,求出E、F的坐标;若不存在,请说明理由.
解方程:
(1)2x2﹣7x+1=0
(2)x(x﹣3)+x﹣3=0.
如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A的仰角∠BDA=60°,求旗杆AB的高度.(结果保留根号)
已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:
x
﹣1
0
1
2
3
y
5
则该二次函数图象的对称轴为( )
A.y轴 B.直线x= C.直线x=2 D.直线x=