题目内容
已知点A(﹣2,y1).B(﹣1,y2)在反比例函数y=﹣上,则y1与y2的大小关系是( )
A. y1>y2 B. y1<y2 C. y1≥y2 D. 无法比较
陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”
(1)王老师为什么说他搞错了?试用方程的知识给予解释;
(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?
如图,点O为等边三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,下列三角形中,外心不是点O的是( )
A. △CBE B. △ACD C. △ABE D. △ACE
如下数表是由1开始的连续自然数组成的,观察规律并完成各题的解答.
(1)表示第9行的最后一个数是 .
(2)用含n的代数式表示:第n行的第一个数是 ,第n行共有 个数;第n行各数之和是 .
如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( )
A. 7 B. 8 C. 9 D. 10
在学完“有理数的运算”后,我市某中学七年级每班各选出5名学生组成一个代表队,在数学老师的组织下进行一次知识竞赛.竞赛规则是:每队都必须回答50道题,答对一题得4分,不答或答错一题倒扣1分.
(1)如果七年级一班代表队最后得分为190分,那么七年级一班代表队回答对了多少道题?
(2)七年级二班代表队的最后得分有可能为142分吗?请说明理由.
甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是____.
如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).
(1)求直线BC的函数表达式;
(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)
②在点P、Q运动的过程中,当PQ=PD时,求t的值;
(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.
2017年端午小长假的第一天,永州市共接待旅客约275 000人次,请将275 000用科学记数法表示为_____.