题目内容
如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是( )
A. B. C. D.
甲、乙两车分别从、两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达地后马上以另一速度原路返回地(掉头的时间忽略不计),乙车到达地以后即停在地等待甲车.如图所示为甲乙两车间的距离(千米)与甲车的行驶时间(小时)之间的函数图象,则当乙车到达地的时候,甲车与地的距离为__________千米.
下列图形中,不能通过其中一个四边形平移得到的是 ( )
如图,两个全等的长方形ABCD与CDEF,旋转长方形ABCD能和长方形CDEF重合,则可以作为旋转中心的点有( )
A. 1个 B. 2个 C. 3个 D. 无数个
下列说法不正确的是( )
A. 频数与总数的比值叫做频率
B. 频率与频数成正比
C. 在频数分布直方图中,小长方形的面积是该组的频率
D. 用样本估计总体,样本越大对总体的估计就越精确
如图,在?ABCD中 过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的长.
如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上.如图1,当n=1时,正三角形的边长a1=_____;如图2,当n=2时,正三角形的边长a2=_____;如图3,正三角形的边长an=_____(用含n的代数式表示).
综合与探究:
如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A,B,C的坐标.
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
长城总长约为6 700 010米,用科学记数法表示为_____米(保留两个有效数字).