题目内容

已知:如图,AB⊥CD于点O,∠1=∠2,OE平分∠BOF,∠EOB=55°,求∠DOG的度数.
分析:由OE为角平分线,利用角平分线定义得到∠BOF=2∠EOB,根据∠EOB的度数求出∠BOF的度数,再由AB与CD垂直,利用垂直的定义得到一对角为直角,根据∠1的度数求出∠2的度数,根据∠DOG与∠2互余即可求出∠DOG的度数.
解答:解:∵OE平分∠BOF,
∴∠BOF=2∠EOB,
∵∠EOB=55°,
∴∠BOF=110°,
∵AB⊥CD,
∴∠AOD=∠BOC=90°,
∴∠1=20°,
又∵∠1=∠2,
∴∠2=20°,
∴∠DOG=70°.
点评:此题考查了角的计算,涉及的知识有:角平分线定义,垂直的定义,以及互余两角的性质,熟练掌握定义及性质是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网