题目内容
【题目】如图1,△ABC是边长为5cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的是速度都为1厘米/秒.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(秒).
![]()
(1)当运动时间为t秒时,BQ的长为_____厘米,BP的长为______厘米.(用含t的式子表示)
(2)当t为何值时,△PBQ是直角三角形.
(3)如图2,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.
【答案】(1)t,5﹣t;(2)第
秒或第
秒;(3)不变,∠CMQ=60°.
【解析】
(1)根据距离=速度×时间,结合图形解答即可;(2)分∠PQB=90°、∠BPQ=90°两种情况,根据含30°角的直角三角形的性质列式计算即可;(3)利用SAS证明△ABQ≌△CAP,可得∠BAQ=∠ACP,根据三角形外角性质及等边三角形的内角是60°解答即可.
(1)∵点P、Q的速度都为1厘米/秒.
∴BQ=t,AP=t,
∴BP=5-t,
故答案为:t,(5﹣t)
(2)设时间为t,则AP=BQ=t,PB=5﹣t,
①如图,当∠PQB=90°时,
∵∠B=60°,
∴∠BPQ=30°,
∴PB=2BQ,得5﹣t=2t,
解得,t=
,
![]()
②如图,当∠BPQ=90°时,
∵∠B=60°,
∴∠BQP=30°,
∴BQ=2BP,得t=2(5﹣t),
解得,t=
,
![]()
∴当第
秒或第
秒时,△PBQ为直角三角形;
(3)∠CMQ不变,理由如下:
在△ABQ与△CAP中,
,
∴△ABQ≌△CAP(SAS),
∴∠BAQ=∠ACP,
∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°,
∴∠CMQ不会变化.
练习册系列答案
相关题目