题目内容
如图,在3×3的正方形网格中标出了∠1和∠2.则∠1+∠2=________.
45°
分析:根据图形,先将角进行转化,再根据勾股定理的逆定理,求得∠ACB=90°,由等腰三角形的性质,推得∠1+∠2=45°.
解答:
解:连接AC,BC.
根据勾股定理,AC=BC=
,AB=
.
∵(
)2+(
)2=(
)2,
∴∠ACB=90°,∠CAB=45°.
∵AD∥CF,AD=CF,
∴四边形ADFC是平行四边形,
∴AC∥DF,
∴∠2=∠DAC(两直线平行,同位角相等),
在Rt△ABD中,
∠1+∠DAB=90°(直角三角形中的两个锐角互余);
又∵∠DAB=∠DAC+∠CAB,
∴∠1+∠CAB+∠DAC=90°,
∴∠1+∠DAC=45°,
∴∠1+∠2=∠1+∠DAC=45°.
故答案为:45°.
点评:本题考查了勾股定理以及勾股定理的逆定理.
分析:根据图形,先将角进行转化,再根据勾股定理的逆定理,求得∠ACB=90°,由等腰三角形的性质,推得∠1+∠2=45°.
解答:
根据勾股定理,AC=BC=
∵(
∴∠ACB=90°,∠CAB=45°.
∵AD∥CF,AD=CF,
∴四边形ADFC是平行四边形,
∴AC∥DF,
∴∠2=∠DAC(两直线平行,同位角相等),
在Rt△ABD中,
∠1+∠DAB=90°(直角三角形中的两个锐角互余);
又∵∠DAB=∠DAC+∠CAB,
∴∠1+∠CAB+∠DAC=90°,
∴∠1+∠DAC=45°,
∴∠1+∠2=∠1+∠DAC=45°.
故答案为:45°.
点评:本题考查了勾股定理以及勾股定理的逆定理.
练习册系列答案
相关题目