题目内容
如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A的坐标为(0,8),点C的坐标为(10,0),OB=OC.
(1)求点B的坐标;
(2)点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PH⊥OB,垂足为H,设△HBP的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,过点P作PM∥CB交线段AB于点M,过点M作MR⊥OC,垂足为R,线
段MR分别交直线PH、OB于点E、G,点F为线段PM的中点,连接EF,当t为何值时,
?
由题意知OB=OC=10,BN=OA=8
∴ON=
∴B(6,8)
(2)如图1,∵∠BON=∠POH,∠ONB=∠OHP=90°
∴△BON∽△POH,
∴
∵PC=5t,
∴OP=10-5t
∴OH=6-3t,PH=8-4t
∴BH=OB-OH=10-(6-3t)=3t+4,
∴S=
(3)①当点G在点E上方时,
BN′=8,CN′=4
∴CB=
∵BM∥PC,BC∥PM
∴四边形BMPC是平行四边形
∴PM=BC=4
∵OC=OB,
∴∠OCB=∠OBC
∵PM∥CB,
∴∠OPD=∠OCB,∠ODP=∠OBC
∴∠OPD=∠ODP
∵∠OPD+∠RMP=90°,∠ODP+∠DPH=90°
∴∠RMP=∠DPH
∴EM=EP
∵点F为PM的中点,
∴EF⊥PM
∵∠EFM=∠PRM=∠EMF+∠PMR=90°
∴△MEF∽△MPR
∴
MR=8,PR=
∴ME=5,EF=
∵
∴EG=2
∴MG=EM-EG=5-2=3
∵AB∥OC
∴∠MBG=∠BON′
又∵∠GMB=∠ON′B=90°
∴△MGB∽△N′BO
∴
∴BM=
∴5t=
∴t=
②当点G在点E下方时,如图3,同理可得MG=ME+EG=5+2=7
∴BM=5t=
∴t=
∴当t=
分析:(1)过点B作BN⊥OC,则四边形ABNO是矩形,BN=AO=8,AB=ON,由勾股定理可求得NB的长;
(2)可证△BON∽△POH,有
(3)分两种情况分析:①当点G在点E上方时,如图2过点B作BN′⊥OC,垂足为N′,先得到四边形BMPC是平行四边形,有PM=BC=4
点评:本题主要考查了相似三角形的判定和性质,勾股定理以及平行四边形的性质,平面直角坐标每等知识点,要注意(3)中,要分类讨论,从而得出运动时间t的值.不要忽略掉任何一种情况.
练习册系列答案
相关题目