题目内容
27的立方根是( )
A. 3 B. ±3 C. ± D.
我们知道,任意一个正整数n都可以进行这样的分【解析】n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.
例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.
(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.
求证:对任意一个完全平方数m,总有F(m)=1;
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;
(3)在(2)所得“吉祥数”中,求F(t)的最大值.
如图,扇形折扇完全打开后,如果张开的角度(∠BAC)为120°,骨柄AB的长为30 cm,扇面的宽度BD的长为20 cm,那么这把折扇的扇面面积为( )
A. cm2 B. cm2 C. cm2 D. 300πcm2
在对45个数据进行整理的频数分布表中,各组的频数之和等于________.
若关于x的不等式(2﹣m)x<1的解为x>,则m的取值范围是( )
A.m>0 B.m<0 C.m>2 D.m<2
已知方程组与有相同的解,求m,n的值.
解方程组时,一学生把c看错得,已知方程组的正确解是,则 ________, _________, ___________.
如图,已知直线y=x与双曲线y=(k>0)交于A,B两点,且点A的横坐标为4,
(1)求 k的值;
(2)利用图形直接写出不等式x>的解;
(3)过原点O的另一条直线l交双曲线y=(k>0)于P,Q两点(P点在第一象限),若由点 A,B,P,Q为顶点组成的四边形面积为 24,求点 P的坐标.
如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=的图象经过点A,若△BEC的面积为10,则k等于( )
A. 5 B. 10 C. 20 D. 40