题目内容

42、如图,在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM交AB于N,设正方形对角线交点为O,试确定OM与ON之间的关系,并说明理由.
分析:此题的结论是OM=ON;OM⊥ON.可以利用已知条件证明.DCM≌△CBN得CM=BN,再推出△OCM≌△OBN得OM=ON.
解答:解:∵四边形ABCD是正方形,
∴DC=BC,∠DCM=∠NBC=90°,
又∵CN⊥DM交AB于N,
∴∠NCM+∠CMD=90°,
而∠CMD+∠CDM=90°,
∴∠NCM=∠CDM,
∴△DCM≌△CBN,
∴CM=BN,
再根据四边形ABCD是正方形可以得到
OC=OB,∠OCM=∠OBN=45°,
∴△OCM≌△OBN.
∴OM=ON,∠COM=∠BON,而∠COM+∠MOB=90°,
∴∠BON+∠MOB=90°.
∴∠MON=90°.
∴OM与ON之间的关系是OM=ON;OM⊥ON.
点评:此题把正方形和全等三角形的知识结合起来,主要利用正方形的性质与全等三角形的判定、性质来解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网