题目内容


在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.

(1)如图①,当α=90°时,求AE′,BF′的长;

(2)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;21世纪教育网

(3)直线AE′与直线BF′相交于点P,当点P在坐标轴上时,分别表示出此时点E′、D′、F′的坐标(直接写出结果即可).www-2-1-cnjy-com


解:(1)当α=90°时,点E′与点F重合,如图①.

∵点A(﹣2,0)点B(0,2),

∴OA=OB=2.

∵点E,点F分别为OA,OB的中点,

∴OE=OF=1

∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,

∴OE′=OE=1,OF′=OF=1.

在Rt△AE′O中,

AE′=

在Rt△BOF′中,

BF′=

∴AE′,BF′的长都等于. ———————————————4分

(2)当α=135°时,如图②.

∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,

∴∠AOE′=∠BOF′=135°.

在△AOE′和△BOF′中,

∴△AOE′≌△BOF′(SAS).

∴AE′=BF′,且∠OAE′=∠OBF′.

∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,

∴∠CPB=∠AOC=90°

∴AE′⊥BF′.——————————————————————9分

(3)点E′(2,0)、D′(2,-2)、F′(0,-2)……12分


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网