题目内容
将正方形的四个顶点用线段连接起来,怎样的连线最短?研究发现,并非连对角线最短,而是如图的连线更短(即用线段AE、BE、EF、CF、DF把四个顶点连接起来).已知图中ABCD是正方形,∠BAE=∠(1)请你证明AD∥EF;
(2)设正方形边长为2,计算连线AE+BE+EF+CF+DF的长度.
分析:延长EF与CD交于点G,延长FE与AB交于H点,求证AH=BH=DG=CG,即可证明EH⊥AB,FG⊥CD,根据AH的长可以计算AE,EH,即可求得AE+BE+EF+CF+DF的值.
解答:
解:延长EF与CD交于点G,延长FE与AB交于H点,
∵∠AEF=∠DFE,∴∠AEH=∠DFG,
∵∠EAH=∠FDG,AE=DF
∴△AEH≌△DFG,
∴AH=DG,
(1)∵∠AEF=∠DFE,∠BAE=∠FDC=30°
∴∠EAD=∠FDA,且AE=DF
∴四边形ADFE是等腰梯形,且EF∥AD,
(2)正方形ABCD的边长为2,
则在直角△AEH中,AH=BH=1,
∴AE=
=
=
=
,
EH=
,
即EF=2-
,
故AE+BE+EF+CF+DF,
=4×
+2-
,
=2+2
.
答:AE+BE+EF+CF+DF的长度为2+2
.
∵∠AEF=∠DFE,∴∠AEH=∠DFG,
∵∠EAH=∠FDG,AE=DF
∴△AEH≌△DFG,
∴AH=DG,
(1)∵∠AEF=∠DFE,∠BAE=∠FDC=30°
∴∠EAD=∠FDA,且AE=DF
∴四边形ADFE是等腰梯形,且EF∥AD,
(2)正方形ABCD的边长为2,
则在直角△AEH中,AH=BH=1,
∴AE=
| AH |
| cos30° |
| 1 | ||||
|
| 2 | ||
|
2
| ||
| 3 |
EH=
| ||
| 3 |
即EF=2-
2
| ||
| 3 |
故AE+BE+EF+CF+DF,
=4×
2
| ||
| 3 |
2
| ||
| 3 |
=2+2
| 3 |
答:AE+BE+EF+CF+DF的长度为2+2
| 3 |
点评:本题考查了正方形各边长相等的性质,全等三角形对应边相等的性质,平行线的判定,准确的计算AE、EF的值是解题的关键.
练习册系列答案
相关题目