题目内容
Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,以AC长为半径作⊙C,则AB与⊙C的位置关系是
- A.相离
- B.相切
- C.相交
- D.无法确定
C
分析:此题首先应求得圆心到直线的距离,根据直角三角形的面积公式即可求得;再进一步根据这些和圆的位置关系与数量之间的联系进行判断.
若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.
解答:根据勾股定理求得BC=5.
∵AC=3,BC=4,
∴AB=
=5,S△ABC=
AC×BC=
×3×4=6,
∴AB上的高为:6×2÷5=2.4,
即圆心到直线的距离是2.4.
∵2.4<3,
∴直线和圆相交.
故选C.
点评:此题主要考查了直线与圆的位置关系,关键是根据三角形的面积求出斜边上的高的长度.
注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
分析:此题首先应求得圆心到直线的距离,根据直角三角形的面积公式即可求得;再进一步根据这些和圆的位置关系与数量之间的联系进行判断.
若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.
解答:根据勾股定理求得BC=5.
∵AC=3,BC=4,
∴AB=
∴AB上的高为:6×2÷5=2.4,
即圆心到直线的距离是2.4.
∵2.4<3,
∴直线和圆相交.
故选C.
点评:此题主要考查了直线与圆的位置关系,关键是根据三角形的面积求出斜边上的高的长度.
注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
练习册系列答案
相关题目