规定:[x]表示不大于x 的最整数,(x) 表示不小于x的最小整数,[x) 表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2,则下列说法正确的是__________(写出所有正确说法).

①当x=1.7时,[x]+(x)+[x)=6;

②当x=-2.1时,[x]+(x)+[x)=-7;

③方程4[x]+3(x)+[x)=11的解为1<x<1.5;

④当-1<x<1时, 函数y=[x]+(x)+x 的图像y=4x 的图像有两个交点.

【答案】②③

【解析】分析:(1)根据题目中给的计算方法代入计算后判定即可;(2)根据题目中给的计算方法代入计算后判定即可;(3)根据题目中给的计算方法代入计算后判定即可;(4)结合x的取值范围,分类讨论,利用题目中给出的方法计算后判定即可.

详【解析】

①当x=1.7时,

[x]+(x)+[x)

=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;

②当x=﹣2.1时,

[x]+(x)+[x)

=[﹣2.1]+(﹣2.1)+[﹣2.1)

=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;

③当1<x<1.5时,

4[x]+3(x)+[x)

=4×1+3×2+1

=4+6+1

=11,故③正确;

④∵﹣1<x<1时,

∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,

当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,

当x=0时,y=[x]+(x)+x=0+0+0=0,

当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,

当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,

∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,

∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,

故答案为:②③.

点睛:本题是阅读理解题,前三问比较容易判定,根据题目所给的方法判定即可;第四问较难,结合x的取值范围分情况讨论即可.

【题型】填空题
【结束】
19

先化简再求值: ,其中.

已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.

(1)求一次函数与反比例函数的解析式;

(2)求两函数图象的另一个交点坐标;

(3)直接写出不等式;kx+b≤的解集.

【答案】(1)y=﹣2x+6, ;(2)(5,﹣4);(3)﹣2≤x<0或x≥5.

【解析】试题分析:(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.

(2)两个函数的解析式作为方程组,解方程组即可解决问题.

(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号.

试题解析:(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴,∴,∴CD=10,∴点C坐标(﹣2,10),B(0,6),A(3,0),∴解得: ,∴一次函数为y=﹣2x+6.

∵反比例函数经过点C(﹣2,10),∴n=﹣20,∴反比例函数解析式为

(2)由,解得,故另一个交点坐标为(5,﹣4);

(3)由图象可知的解集:﹣2≤x<0或x≥5.

考点:反比例函数与一次函数的交点问题.

【题型】解答题
【结束】
22

一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.

(1)写出按上述规定得到所有可能的两位数;

(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网