题目内容
某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)
(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当销售单价为80元时,y最大值=4500;(3)销售单价应该控制在82元至90元之间. 【解析】试题分析: (1)由“商品利润”=“商品售价”-“商品成本价”和“总利润”=“单件商品利润” “商品销售量”结合题意可列出函数关系式; (2)把(1)中所得函数解析式配方,再由题意求得自变量的取值范围,就可在自变量的取...
练习册系列答案
相关题目
七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,现在从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况如下表:
节水量(m3) | 0.2 | 0.25 | 0.3 | 0.4 | 0.5 |
家庭数 | 1 | 2 | 2 | 4 | 1 |
那么这组数据的众数和平均数分别是( )
A. 0.4m3和0.34m3 B. 0.4m3和0.3m3 C. 0.25m3和0.34m3 D. 0.25m3和0.3m3
A 【解析】试题分析:由表格得知,0.4这个数据出现次数最多,所以众数是0.4,排除后两个选项,用加权平均数计算:(0.2×1+0.25×2+0.3×2+0.4×4+0.5×1)÷10=3.4÷10=0.34,故选A.