题目内容
如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为( )
A. 40° B. 50° C. 60° D. 80°
实数-27的立方根是 ______ .
在我们所学的课本中,多项式与多项式相乘可以用几何图形的面积来表示.例如,(2a+b)(a+b)=2a2+3ab+b2就可以用图(1)来表示.请你根据此方法写出图(2)中图形的面积所表示的代数恒等式:____________.
【答案】(a+2b)(2a+b)=2a2+5ab+2b2
【解析】试题分析:图②的面积可以用长为a+a+b,宽为b+a+b的长方形面积求出,也可以由四个正方形与5个小长方形的面积之和求出,表示出即可.
【解析】根据图形列得:(a+2b)(2a+b)=2a2+5ab+2b2.
故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.
考点:多项式乘多项式.
点评:此题考查了多项式乘以多项式法则,熟练掌握法则是解本题的关键.
【题型】填空题【结束】18
若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12,16=52-32,则3和16是智慧数).已知按从小到大的顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…则第2 013个“智慧数”是______.
下列运算正确的是( )
A. (-4x3)2=16x6 B. a6÷a2=a3 C. 2x+6x=8x2 D. (x+3)2=x2+9
每个小方格都是边长为1个单位长度的小正方形,△OAB在平面直角坐标系中的位置如图所示.
(1)将△OAB先向右平移5个单位,再向上平移3个单位,得到△O1A1B1,请画出△O1A1B1并直接写出点B1的坐标;
(2)将△OAB绕原点O顺时针旋转90º,得到△OA2B2,请画出△OA2B2,并求出点A旋转到A2时线段OA扫过的面积.
下列图形中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是_____________.
点(-3,2),(a,a+1)在函数y=kx-1的图象上,则k= ,a= .
已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为E,ED的延长线与AC的延长线交于点F。
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为4,BE=2,求∠F的度数。