题目内容
已知二次函数y=-x2+4x.
(1)用配方法把该二次函数化为y=a(x-h)2+k的形式,并指出函数图象的对称轴和顶点坐标;
(2)求这个函数图象与x轴的交点的坐标.
已知,则= .
把下列各数填入相应的括号内:11,-,6.5,-8,3,0,1,-1,-3.14.
(1)正数集合:{ …};(2)负数集合:{ …};
(3)整数集合:{ …};(4)正整数集合:{ …};
(5)负整数集合:{ …};(6)分数集合:{ …};
(7)正分数集合:{ …};(8)负分数集合:{ …};
(9)有理数集合:{ …}.
如图,已知矩形ABCD ,一条直线将该矩形 ABCD 分割成两个多边形,若这两个多边形的内角和分别为 M和 N,则M + N 不可能是( )
A. 360° B. 540° C. 720° D. 630°
如图中三角形的个数是( )
A. 6 B. 7 C. 8 D. 9
如果抛物线y=(2+k)x2﹣k的开口向下,那么k的取值范围是_____.
一条开口向下的抛物线的顶点坐标是(2,3),则这条抛物线对应的函数有( )
A. 最大值3 B. 最小值3 C. 最大值2 D. 最小值-2
一组数据x1,x2,…,xn的平均数为5,方差为16,其中n是正整数,则另一组数据3x1+2,3x2+2,…,3xn+2的平均数和标准差分别是( )
A. 15,144 B. 17,144 C. 17,12 D. 7,16
比较大小,并说理:
(1)与6;
(2)与.