题目内容
现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.
(1)设A地到甲地运送蔬菜x吨,请完成下表:
| 运往甲地(单位:吨) | 运往乙地(单位:吨) | |
| A | x | 14﹣x |
| B | 15﹣x | x﹣1 |
(2)设总运费为W元,请写出W与x的函数关系式.
(3)怎样调运蔬菜才能使运费最少?
【考点】一次函数的应用.
【专题】压轴题.
【分析】(1)根据题意A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,可得解.
(2)根据从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨可列出总费用,从而可得出答案.
(3)首先求出x的取值范围,再利用w与x之间的函数关系式,求出函数最值即可.
【解答】解:(1)如图所示:
| 运往甲地(单位:吨) | 运往乙地(单位:吨) | |
| A | x | 14﹣x |
| B | 15﹣x | x﹣1 |
(2)由题意,得
W=50x+30(14﹣x)+60(15﹣x)+45(x﹣1)=5x+1275(1≤x≤14).
(3)∵A,B到两地运送的蔬菜为非负数,
∴![]()
,
解不等式组,得:1≤x≤14,
在W=5x+1275中,
∵k=5>0,
∴W随x增大而增大,
∴当x最小为1时,W有最小值,
∴当x=1时,A:x=1,14﹣x=13,
B:15﹣x=14,x﹣1=0,
即A向甲地运1吨,向乙地运13吨,B向甲地运14吨,向乙地运0吨才能使运费最少.
【点评】本题考查了利用一次函数的有关知识解答实际应用题,一次函数是常用的解答实际问题的数学模型,是中考的常见题型,同学们应重点掌握.
练习册系列答案
相关题目