题目内容
(2012•高邮市二模)如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,若CD=5,则四边形ABCD的面积为 .
两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=ACBD,其中正确的结论有( )
A.0个 B.1个 C..2个 D..3个
(1)计算:;
(2)先化简,再求值:,其中x=﹣2.
-2016的相反数是( )
A. 2016 B. -2016 C. D. -
已知关于x的方程x2+ax+a+3=0有两个相等的实数根,求a的值并求出此时这个方程的根.
一只不透明的袋子中装有10个白球、20个黄球和30个红球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球,则下列事件:(1)该球是白球;(2)该球是黄球;(3)该球是红球,按发生的可能性大小从小到大依次排序为: (只填写序号)
如图,?ABCD中,对角线AC、BD相交于点O,∠CAB=90°,AC=6cm,BD=10cm,则?ABCD的周长为( )
A.(4+8)cm B.(2+4)cm C.32cm D.28cm
如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,过E点作EH⊥CD于H,则EH的长为 .
我们对多项式x2+x-6进行因式分解时,可以用特定系数法求解.例如,我们可以先设x2+x-6=(x+a)(x+b),显然这是一个恒等式.根据多项式乘法将等式右边展开有:x2+x-6=(x+a)(x+b)=x2+(a+b)x+ab
所以,根据等式两边对应项的系数相等,可得:a+b=1,ab=-6,解得a=3,b=-2或者a=-2,b=3.所以x2+x-6=(x+3)(x-2).当然这也说明多项式x2+x-6含有因式:x+3和x-2.
像上面这种通过利用恒等式的性质来求未知数的方法叫特定系数法.利用上述材料及示例解决以下问题.
(1)已知关于x的多项式x2+mx-15有一个因式为x-1,求m的值;
(2)已知关于x的多项式2x3+5x2-x+b有一个因式为x+2,求b的值.