题目内容

如图,已知∠1=∠2,CF⊥AB于F,DE⊥AB于E,则FP与BC平行吗?
在下列解答中,填空:
证明:∵CF⊥AB,DE⊥AB
 

 
 

∴∠1=∠
 

又∵∠1=∠2(已知),
∴∠2=∠BCF
 

∴FP∥BC
 
考点:平行线的判定与性质
专题:推理填空题
分析:由条件可先判定DE∥CF,可得到∠1=∠DCF=∠2,根据平行线的判定可得PF∥BC,依次填空即可.
解答:解:∵CF⊥AB,DE⊥AB(已知),
∴CF∥DE,
∴∠1=∠DCF.
又∵∠1=∠2(已知),
∴∠2=∠BCF(等量代换),
∴FP∥BC(内错角相等,两直线平行).
故答案为:(已知);DE;CF;DCF;(等量代换);(内错角相等,两直线平行).
点评:本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行?同位角相等,②两直线平行?内错角相等,③两直线平行,同旁内角互补.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网