题目内容
如图,在正方形ABCD中,点E、F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于
- A.

- B.

- C.

- D.

C
分析:因为AE=4,EF=3,AF=5,AE2+EF2=AF2,所以∠AEF=90°,可证△ABE∽△ECF,从而可得AB:EC=AE:EF=4:3,即EC=
=
BC,BE=
=
,在直角三角形ABE中,AB2+BE2=AE2,AB2+
=16,AB2=
,所以正方形ABCD面积=AB2=
.
解答:∵AE=4,EF=3,AF=5
∴AE2+EF2=AF2,∴∠AEF=90°
∴∠AEB+∠FEC=90°
∵正方形ABCD
∴∠ABE=∠FCE=90°
∵∠CFE+∠CEF=∠EAB+∠AEB=90°
∴∠FEC=∠EAB
∴△ABE∽△ECF
∴EC:AB=EF:AE=3:4,即EC=
=
BC
∴BE=
=
∵AB2+BE2=AE2,∴AB2+
=16,AB2=
∴正方形ABCD面积=AB2=
故选C.
点评:本题综合考查了正方形的性质和勾股定理的应用,本题中利用勾股定理得出△AEF是直角三角形是解题的关键.
分析:因为AE=4,EF=3,AF=5,AE2+EF2=AF2,所以∠AEF=90°,可证△ABE∽△ECF,从而可得AB:EC=AE:EF=4:3,即EC=
解答:∵AE=4,EF=3,AF=5
∴AE2+EF2=AF2,∴∠AEF=90°
∴∠AEB+∠FEC=90°
∵正方形ABCD
∴∠ABE=∠FCE=90°
∵∠CFE+∠CEF=∠EAB+∠AEB=90°
∴∠FEC=∠EAB
∴△ABE∽△ECF
∴EC:AB=EF:AE=3:4,即EC=
∴BE=
∵AB2+BE2=AE2,∴AB2+
∴正方形ABCD面积=AB2=
故选C.
点评:本题综合考查了正方形的性质和勾股定理的应用,本题中利用勾股定理得出△AEF是直角三角形是解题的关键.
练习册系列答案
相关题目