题目内容

11.把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是(  )
A.4:5B.2:5C.$\sqrt{5}$:2D.$\sqrt{5}$:$\sqrt{2}$

分析 首先分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.

解答 解:如图1,连接OD,
∵四边形ABCD是正方形,
∴∠DCB=∠ABO=90°,AB=BC=CD=1,
∵∠AOB=45°,
∴OB=AB=1,
由勾股定理得:OD=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
∴扇形的面积是$\frac{45π×(\sqrt{5})^{2}}{360}$=$\frac{5}{8}$π;
如图2,连接MB、MC,
∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,
∴∠BMC=90°,MB=MC,
∴∠MCB=∠MBC=45°,
∵BC=1,
∴MC=MB=$\frac{\sqrt{2}}{2}$,
∴⊙M的面积是π×($\frac{\sqrt{2}}{2}$)2=$\frac{1}{2}$π,
∴扇形和圆形纸板的面积比是$\frac{5}{8}$π÷($\frac{1}{2}$π)=$\frac{5}{4}$,
即圆形纸片和扇形纸片的面积比是4:5.
故选A.

点评 本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网