题目内容

如图,在梯形ABCD中,AD∥BC,∠B+∠C=90°,BC-AD=10,DC=6,则AB长为
 
考点:梯形
专题:
分析:过点D作DE∥AB交BC于E,根据两直线平行,同位角相等可得∠DEC=∠B,然后求出△CDE是直角三角形,再判断出四边形ABED是平行四边形,根据平行四边形的对边相等可得AD=BE,AB=DE,然后利用勾股定理列式求出DE,从而得解.
解答:解:如图,过点D作DE∥AB交BC于E,
则∠DEC=∠B,
∵∠B+∠C=90°,
∴∠DEC+∠C=90°,
∴∠CDE=90°,
∴△CDE是直角三角形,
又∵AD∥BC,
∴四边形ABED是平行四边形,
∴AD=BE,AB=DE,
∴CE=BC-BE=BC-AD=10,
在Rt△CDE中,DE=
CE2-CD2
=
102-62
=8,
所以,AB=8.
故答案为:8.
点评:本题考查了梯形,平行四边形的判定与性质,勾股定理,难点在于作辅助线把梯形分成平行四边形和直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网