题目内容

如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是________.


分析:先根据半径OA长是6米,C是OA的中点可知OC=OA=3米,再在Rt△OCD中,利用勾股定理求出CD的长,根据锐角三角函数的定义求出∠DOC的度数,由S阴影=S扇形AOD-S△DOC即可得出结论.
解答:解:如图,连接OD.
∵弧AB的半径OA长是6米,C是OA的中点,
∴OC=OA=×6=3米,
∵∠AOB=90°,CD∥OB,
∴CD⊥OA,
在Rt△OCD中,∵OD=6,OC=3,
∴CD===3米,
∵sin∠DOC===
∴∠DOC=60°,
∴S阴影=S扇形AOD-S△DOC=-×3×3=(平方米).
故答案是:
点评:本题考查的是扇形的面积,根据题意求出∠DOC的度数,再由S阴影=S扇形AOD-S△DOC得出结论是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网