题目内容

【题目】阅读下面材料:

已知实数mn满足(2m3+n3+1)(2m3+n3-1)=80,试求2m3+n3的值

解:设2m3+n3=t,则原方程变为(t+1)(t-1)=80,整理得t2-1=80t2=81 t=±9,所以2m3+n3=±9

上面这种方法称为换元法,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.

根据以上阅读材料内容,解决下列问题,并写出解答过程.

已知实数xy满足(4x2+4y2+3)(4x2+4y2-3)=27,求x2+y2的值.

【答案】

【解析】

t=x2+y2t≥0),则原方程转化为(4t+3)(4t-3=27,然后解该方程即可.

t=x2+y2(t≥0),则原方程转化为(4t+3)(4t-3)=27

整理,得16t2-9=27

所以t2=

t≥0·

t=

x2+y2的值是

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网