题目内容

【题目】如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,且∠A=D.

(1)求∠ACD的度数;

(2)若CD=3,求图中阴影部分的面积.

【答案】(1) ∠ACD=120°;(2)

【解析】

(1)连接OC,由过点C的切线交AB的延长线于点D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由AO=CO,推出∠A=∠ACO,推出∠COD=2∠A,可得3∠D=90°,推出∠D=30°,即可解决问题

(2)先求△OCD和扇形OCB的面积,进而可求出图中阴影部分的面积.

解:(1)连接OC,

∵过点C的切线交AB的延长线于点D,

OCCD,

∴∠OCD=90°,

即∠D+COD=90°,

AO=CO,

∴∠A=ACO,

∴∠COD=2A,

∵∠A=D,

∴∠COD=2D,

3D=90°,

∴∠D=30°,

ACD=180°﹣A﹣D=180°﹣30°﹣30°=120°.

(2)由(1)可知∠COD=60°

RtCOD中,∵CD=3,

OC=3×

=

∴阴影部分的面积=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网