题目内容

如图,AB是⊙0的弦,BC与⊙0相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于(  )

 

A.

15°

B.

20°

C.

30°

D.

70°

考点:

切线的性质。

分析:

由BC与⊙0相切于点B,根据切线的性质,即可求得∠OBC=90°,又由∠ABC=70°,即可求得∠OBA的度数,然后由OA=OB,利用等边对等角的知识,即可求得∠A的度数.

解答:

解:∵BC与⊙0相切于点B,

∴OB⊥BC,

∴∠OBC=90°,

∵∠ABC=70°,

∴∠OBA=∠OBC﹣∠ABC=90°﹣70°=20°,

∵OA=OB,

∴∠A=∠OBA=20°.

故选B.

点评:

此题考查了切线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用,注意圆的切线垂直于经过切点的半径定理的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网