题目内容
已知x=347,y=756,z=-100,求式子(x+y+z)(x-y-z)-(x+y-z)(x-y+z)的值.
考点:整式的混合运算—化简求值
专题:
分析:首先利用平方差公式将原始化简,进而代入已知求出即可.
解答:解:(x+y+z)(x-y-z)-(x+y-z)(x-y+z)
=[x+(y+z)][x-(y+z)]-[x+(y-z)][x-(y-z)]
=x2-(y+z)2-x2+(y-z)2
=[(y-z)+(y+z)][(y-z)-(y+z)]
=2y×(-2z)
=-4yz,
将y=756,z=-100代入得:
原式=-4×756×(-100)=302400.
=[x+(y+z)][x-(y+z)]-[x+(y-z)][x-(y-z)]
=x2-(y+z)2-x2+(y-z)2
=[(y-z)+(y+z)][(y-z)-(y+z)]
=2y×(-2z)
=-4yz,
将y=756,z=-100代入得:
原式=-4×756×(-100)=302400.
点评:此题主要考查了整式的混合运算,正确运用平方差公式是解题关键.
练习册系列答案
相关题目