题目内容
解方程和不等式组:
⑴;
⑵
如图,在△ABC,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A=____.
如图,已知抛物线y=x2+bx+c经过A(-1,0),B(3,0)两点.
(1)求抛物线的表达式和顶点坐标;
(2)当0<x<3时,求y的取值范围;
(3)点P为抛物线上一点,若S△PAB=10,求出此时点P的坐标.
将抛物线y=-2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )
A. y=-2(x+1)2 B. y=-2(x+1)2+2
C. y=-2(x-1)2+2 D. y=-2(x-1)2+1
已知Rt△ABC,∠C=90°,AB=10,且cosA=. M为线段AB的中点, 作DM⊥AB交AC于D. 点Q在线段AC上,点P在线段BC上,以PQ为直径的圆始终过点M, 且PQ交线段DM于点E.
⑴ 试说明△AMQ∽△PME;
⑵ 当△PME是等腰三角形时,求出线段AQ的长.
用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为______________。
如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为( )
A. 12 B. 4 C. 3 D. 6
如图,从左面看圆柱,则图中圆柱的投影是( )
A. 圆 B. 矩形 C. 梯形 D. 圆柱
解答题.
某校学生积极为地震灾区捐款奉献爱心.小颖随机抽查其中30名学生的捐款情况如下:(单位:元)2、5、35、8、5、10、15、20、15、5、45、10、2、8、20、30、40、10、15、15、30、15、8、25、25、30、15、8、10、50.
(1)这30名学生捐款的最大值、最小值、极差、平均数各是多少?
(2)将30名学生捐款额分成下面5组,请你完成频数统计表:
(3)根据上表,作出频数分布直方图.