题目内容
若多项式x2-y2+3x-7y+k可以分解成两个一次因式的乘积,则k= .
分析:由题意可得:x2-y2+3x-7y+k=(x+
)2-(y+
)2=(x+
+y+
)(x+
-y-
),然后利用整式乘法,即可求得原式等于x2-y2+3x-7y-10,继而求得答案.
| 3 |
| 2 |
| 7 |
| 2 |
| 3 |
| 2 |
| 7 |
| 2 |
| 3 |
| 2 |
| 7 |
| 2 |
解答:解:∵x2-y2+3x-7y+k=(x+
)2-(y+
)2=(x+
+y+
)(x+
-y-
)=(x+y+5)(x-y-2),
又∵(x+y+5)(x-y-2)=x2-y2+3x-7y-10,
∴k=-10.
故答案为:-10.
| 3 |
| 2 |
| 7 |
| 2 |
| 3 |
| 2 |
| 7 |
| 2 |
| 3 |
| 2 |
| 7 |
| 2 |
又∵(x+y+5)(x-y-2)=x2-y2+3x-7y-10,
∴k=-10.
故答案为:-10.
点评:此题考查了因式分解的应用.注意掌握配方法与平方差公式的应用.
练习册系列答案
相关题目