题目内容
【题目】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
![]()
(1)当点D在AC上时,如下面图1,线段BD、CE有怎样的数量关系和位置关系?请直接写出结论,不需要证明.
(2)将下面图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如下图2,上述关系是否成立?如果成立请说明理由.
【答案】(1)
;(2)成立,见解析
【解析】
(1)根据SAS推知△ABD≌△ACE,然后由全等三角形的性质得出BD=CE,∠ABD=∠EAC,然后在△ABD和△CDF中,由三角形内角和定理可以求得∠CFD=90°,即BD⊥CE;
(2)根据SAS推知△ABD≌△ACE,然后由全等三角形的性质得出BD=CE,∠ABF=∠ECA,作辅助线BH构建对顶角,再根据三角形内角和即可得解.
(1)BD=CE,BD⊥CE;理由如下:
∵∠BAC=∠DAE=90°
∴∠BAD-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE
在△ABD与△ACE中,
∵AB=AC,∠BAD=∠CAE,AD=AE
∴△ABD≌△ACE(SAS)
∴BD=CE
延长BD交EC于F,如图所示:
![]()
由△ABD≌△ACE,得∠ABD=∠EAC
∵∠ADB=∠CDF
∴∠CFD=∠DAB=90°
∴BD⊥CE;
(2)成立;理由如下:
延长BD交AC于F,交CE于H,如图所示:
![]()
∵∠BAC=∠DAE=90°
∴∠BAD-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE
在△ABD与△ACE中,
∵AB=AC,∠BAD=∠CAE,AD=AE
∴△ABD≌△ACE(SAS)
∴BD=CE
在△ABF与△HCF中,
∵∠ABF=∠HCF,∠AFB=∠HFC
∴∠CHF=∠BAF=90°
∴BD⊥CE
练习册系列答案
相关题目