题目内容

推理填空:

已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。

求证:AD∥BE。

证明:∵AB∥CD(已知)

   ∴∠4=∠     (                     )

∵∠3=∠4(已知)

∴∠3=∠     (                       )

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF(等式的性质)

即∠ BAF =∠        

∴∠3=∠     (                    )

∴AD∥BE(                    )

 


(每空1分)推理填空:

已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。

求证:AD∥BE。

证明:∵AB∥CD(已知)

  ∴∠4=∠BAF两直线平行,同位角相等

∵∠3=∠4(已知)

∴∠3=∠BAF等量代换

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF(等式的性质)

即∠ BAF =∠CAD

∴∠3=∠CAD等量代换

∴AD∥BE(内错角相等,两直线平行

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网