题目内容
一元二次方程x2+px-2=0的一个根为2,则p的值为 ( )
A.1 B.2 C.-1 D.-2
C
(用简便方法计算)
A.4 、1 B.-4、1 C.-4、-1 D.4、-1
);
如图,△ABC中,CD是边AB上的高,且.
(1)求证:△ACD∽△CBD; (2)求∠ACB的大小.
⊙O的半径为R,圆心到点A的距离为d,且R、d是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是 ( )
A.点A在⊙O内部 B.点A在⊙O上 C.点A在⊙O外部 D.点A不在⊙O上
设一元二次方程x2-5x+2=0的两个实数根分别为x1和x2,则x1+x2=________。
九(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.
小组讨论后,同学们做了以下三种试验:
请根据以上图案回答下列问题:
(1)在图案1中,如果铝合金材料总长度(图中所有黑线的长度和)为6m,当AB为1m,长方形框架ABCD的面积是 m2;
(2)在图案2中,如果铝合金材料总长度为6m,设AB为xm,长方形框架ABCD的面积为S= (用含x的代数式表示);当AB= m时,长方形框架ABCD的面积S最大;在图案3中,如果铝合金材料总长度为am,设AB为xm,当AB= m时,长方形框架ABCD的面积S最大.
(3)经过这三种情形的试验,他们发现对于图案4这样的情形也存在着一定的规律.探索:如图案4如果铝合金材料总长度为am,共有n条竖档时,那么当竖档AB多少时,长方形框架ABCD的面积最大.(写出求解过程)
如图,一次函数y=-x+4的图像与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合. ⑴写出点A的坐标 ;
⑵当点P在直线l上运动时,是否存在点P使得△OQB与
△APQ全等?如果存在,求出点P的坐标;如果不存在,
请说明理由.
⑶若点M在直线l上,且∠POM=90°,记△OAP外接圆和
△OAM外接圆的面积分别是、,求的值.