题目内容
已知A=2x2-xy,B=y2+xy,C=-x2+2y2-xy,且|x+
|+(y-2)2=0,求A-[2B-3(C-A)]的值.
| 1 | 2 |
分析:将A,B及C代入所求式子中,去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.
解答:解:∵A=2x2-xy,B=y2+xy,C=-x2+2y2-xy,
∴A-[2B-3(C-A)]
=(2x2-xy)-[2(y2+xy)-3(-x2+2y2-xy-2x2+xy)]
=2x2-xy-2y2-2xy-x2+2y2-xy-2x2+xy
=-x2-3xy,
∵|x+
|+(y-2)2=0,
∴x=-
,y=2,
则原式=-
+3=
.
∴A-[2B-3(C-A)]
=(2x2-xy)-[2(y2+xy)-3(-x2+2y2-xy-2x2+xy)]
=2x2-xy-2y2-2xy-x2+2y2-xy-2x2+xy
=-x2-3xy,
∵|x+
| 1 |
| 2 |
∴x=-
| 1 |
| 2 |
则原式=-
| 1 |
| 4 |
| 11 |
| 4 |
点评:此题考查了整式的加减-化简求值,以及非负数的性质,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目