题目内容
据教育部通报,2014年参加全国硕士研究生入学考试的人数约为1720000. 数字1720000用科学记数法表示为
A. B. C. D.
B
如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6, ,则EC的长是
A.
4.5
B.
8
C.
10.5
D.
14
如图,在平面直角坐标系中,直线与抛物线y=ax2+bx-3(a≠0)交于A、B两点,点A在x轴上,点B的纵坐标为5.点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.
(1)求抛物线的解析式;
(2)设点P的横坐标为m.
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为1:2.若存在,直接写出m的值;若不存在,请说明理由.
已知:如图,E是上一点,AB=CE,AB∥CD,∠ACB =∠D.
求证:BC =ED.
在中,,,,设为最长边.当时,是直角三角形;当时,利用代数式和的大小关系,可以判断的形状(按角分类).
(1)请你通过画图探究并判断:当三边长分别为6,8,9时, 为____三角形;当三边长分别为6,8,11时,为______三角形.
(2)小明同学根据上述探究,有下面的猜想:“当>时,为锐角三角形;当<时,为钝角三角形.” 请你根据小明的猜想完成下面的问题:
当,时,最长边在什么范围内取值时, 是直角三角形、锐角三角形、钝角三角形?
如图,在ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为
A.150° B.130°
C.120° D.100°
解不等式组:
如图2,直线 AB∥CD,∠BAE=28О,∠ECD=50О,则∠E=
A.68О B.78О C. 92О D.102О
以下是小辰同学阅读的一份材料和思考:
五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).
小辰阅读后发现,拼接前后图形的面积相等,若设新的正方形的边长为x(x>0),可得x2=5,x=.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长.
参考上面的材料和小辰的思考方法,解决问题:
五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.
具体要求如下:
(1)设拼接后的长方形的长为a,宽为b,则a的长度为 ;
(2)在图④中,画出符合题意的两条分割线(只要画出一种即可);
(3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)