搜索
题目内容
△ABC中,AC=6,AB=BC=5,则BC边上的高AD=________.
试题答案
相关练习册答案
分析:先根据题意画出图形,由等腰三角形的性质可求出AE的长,根据勾股定理求出BE的长,由三角形的面积公式即可得出AD的长.
解答:
解:如图所示:过点B作BE⊥AC于点E,
∵AC=6,AB=BC=5,
∴AE=
AC=3,
∴在Rt△ABE中,BE=
=
=4,
∴
AC•BE=
BC•AD,即AD=
=
=
.
故答案为:
.
点评:本题考查的是勾股定理及等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.
练习册系列答案
征服英语名师课时计划系列答案
考前系列答案
口算心算快速算系列答案
跨越中考总复习方略系列答案
新语文阅读训练系列答案
秒杀口算题系列答案
口算题卡加应用题集训系列答案
中考1加1系列答案
鼎尖阅读系列答案
综合自测系列答案
相关题目
如图,在△ABC中,AC>BC,D是AC边上一点,连接BD.
(1)要使△CBD∽△CAB,还需要补充一个条件是
;(只要求填一个)
(2)若△CBD∽△CAB,且AD=2,BC=
3
,求CD的长.
操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.
研究:
(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.
已知:在△ABC中AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,
∠ABE=∠DBM.
(1)如图1,当∠ABC=45°时,求证:AE=
2
MD;
(2)如图2,当∠ABC=60°时,则线段AE、MD之间的数量关系为
AE=2MD
AE=2MD
;
(3)在(2)的条件下延长BM到P,使MP=BM,连接CP,若AB=7,AE=
2
7
,求tan∠PCB和tan∠ACP的值.
如图,在Rt△ABC中,AC=24cm,BC=7cm,P点在BC上,从B点到C点运动(不包括C点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.
(1)当t为何值时,P、Q两点的距离为5
2
cm?
(2)当t为何值时,△PCQ的面积为15cm
2
?
(3)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?
已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.
(1)求证:△ACD≌△BCD;
(2)求∠A;
(3)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;
(4)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案